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Abstract 

The use of a likelihood criterion associated with 
maximum-entropy (ME) extrapolation for selecting 
phase sets as part of a new multisolution phasing 
strategy, already applied to solving small crystal struc- 
tures from single-crystal data [Gilmore, Bricogne & 
Bannister (1990). Acta Cryst. A46, 297-308] and X- 
ray powder diffraction data [Gilmore, Henderson & 
Bricogne (1991). Acta Cryst. A47, 830-841], has been 
tested on the small protein avian pancreatic polypep- 
tide (APP) with 301 non-H atoms in the asymmetric 
unit in space group C2. A collection of 50 phase sets 
for APP were provided by Woolfson & Yao. They 
had been generated from random starting phases by 
the SAYTAN procedure [Woolfson & Yao (1990). 
Acta Cryst. A46, 409-413] using data to a resolution 
of 0.98 A. Six of these had an unweighted mean 
absolute phase error, (IA~0l), of less than 50 °, the 
remainder having phase errors of 60 ° or more. 
However, none of the conventional figures of merit 
were able to identify these preferred sets. Each phase 
set was subjected to our standard procedure of 
entropy maximization and of evaluation of the log- 
likelihood gain resulting from the associated ME 
extrapolation. With only a small subset of data (to 
2 A resolution), the likelihood criterion identified 
unambiguously the phase sets with (IA~01) less than 
50 ° . In contrast, conventional figures of merit showed 
no such ability. We conclude that, although SA YTAN 
is at present much more efficient than our program 
(MICE) at generating large trial phase sets, the latter 
is clearly superior in discerning the best of these phase 
sets. We therefore expect that our current efforts to 
make MICE run faster should result in better pros- 
pects of ab initio phasing for small macromolecules. 

O. Introduction 

In previous papers (Gilmore, Bricogne & Bannister, 
1990; Gilmore, Henderson & Bricogne 1991) we have 
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applied the methods of entropy maximization and 
likelihood estimation to the phasing of small 
molecules from both single-crystal and powder 
diffraction data. In particular, likelihood emerged as 
a figure of merit of unique power in the selection of 
phase sets having minimum phase error. 

Debaerdemaeker,  Tate & Woolfson (1985, 1988) 
have devised an alternative formalism, programmed 
as SAYTAN, that replaces the traditional tangent 
formula of direct methods. The latter is a corner stone 
of direct methods where it is used both to generate 
and to refine phases. Since it treats all invariants as 
independent without taking account of their correla- 
tions, it tends to refine phases to overconsistency; it 
also requires data at atomic resolution. In SA YTAN 
(Sayre tangent formula) these problems are, in part, 
overcome by using not only the largest E magnitudes 
but also the smallest, and an attempt is made to satisfy 
the Sayre equation (Sayre, 1952) by the suitable incor- 
poration of both positive and negative quartets and 
~0- type triplets, which involve two strong and one 
weak E magnitudes. It has been applied successfully 
to a small protein, avian pancreatic polypeptide 
(APP) (Woolfson & Yao, 1990) where 1000 phase 
sets were generated; the initial phases for the strongest 
727 E magnitudes were assigned random values and 
these were refined by the Sayre tangent equation. Six 
of these 1000 sets had an unweighted mean absolute 
phase error, (I,a~l>, below 45 ° and thus contained 
useful structural information. However, there was 
considerable difficulty in distinguishing these sets 
using conventional figures of merit (FOM's).  Since 
then a new criterion termed TFOM (Tate, private 
communication) has been developed which can act 
as a partial filter, reducing the 1000 sets to ca 20, but 
it still cannot wholly distinguish the best ones. Thus 
the time-consuming step of map generation and inter- 
pretation is necessary in order to apply this method 
to APP. 

It was thought that this situation would provide a 
good test of the discrimination power of likelihood 
for small macromolecules. A large number of phase 
sets generated by SA YTAN were subjected to entropy 
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maximization using the program M I C E  (Gilmore, 
Bricogne & Bannister, 1990). The variation of the 
log-likelihood gain in the course of entropy maximiz- 
ation was recorded for each phase set to test our 
expectation that the best phase sets would exhibit 
large log-likelihood gains during this process. 

§ 1 outlines data preparation, the initial S A Y T A N  
phasing and the interface to the M I C E  program. § 2 
presents and discusses the results in terms of likeli- 
hood gains, 2 refinement and the resulting maps. § 3 
summarizes the results and outlines forthcoming fur- 
ther development. 

1. Data preparation, S A Y T A N  phasing and the 
M I C E  program 

Avian pancreatic polypeptide (Glover, Haneef, Pitts, 
Wood, Moss, Tickle & Blundell, 1983) is a small 
protein with the following crystal data: 
CIo9N53055Zn+80H20, monoclinic, a =34.18, b = 
32.92, c = 28.40 A,/3  = 105.6°; space group C2, Z = 
4. There are 301 non-H atoms in 36 residues in the 
asymmetric unit. The data resolution is 0.98 A. 

All the data sets were kindly provided by Yao 
Jia-xing and Michael Woolfson. They had previously 
been processed as follows. 

(i) The data were normalized to give E magni- 
tudes. The largest 800 and the smallest 200 magni- 
tudes were selected for use in S A Y T A N .  A conver- 
gence map rejected 33 large and 17 small E magni- 
tudes on the grounds of insufficient triplet con- 
nectivity; the remaining 727 large E's interconnected 
by 9726 triplets and 183 small E 's  interconnected by 
6434 go relationships were used in phase refinement. 

(ii) Starting with random phases 1000 trials were 
made in which the phases were refined to convergence 
by SA Y T A N  employing a limited subset of positive 
quartets, negative quartets, three-phase invariants 
and go triplets. Three subsets of these 1000 sets were 
used as input to M I C E :  

(a) a set of 10 containing one good set. This acted 
as a pilot test to measure the usefulness of traditional 
figures of merit; 

(b) a set of 50 containing six sets having (IA~0[)< 
50°; 

(c) a set of 20 filtered by the TFOM figure of merit. 
It was not possible to process all 1000 phase sets 

because of the considerable demands such a calcula- 
tion would have made on our computing resources. 

Each of these phase sets were processed as follows. 
(iii) A full set of E magnitudes was used: the 

likelihood explores how well structure-factor magni- 
tudes are extrapolated for all intensities - not just 
the very strong and the very weak. No standard devi- 
ations were available for IEhl; these are useful in both 
the entropy maximization itself and in the likelihood 
calculations where they weight the contributions of 
individual reflections. They were simulated by setting 

~r(lEh[) = 0"llEhl +0"01. This corresponds to the nor- 
mal level of ca 10-15% error in E magnitude found 
in good-quality data sets. Since the variance of IEhl 
plays only a minor role in entropy maximization and 
since the procedure is not unduly sensitive to it, this 
relatively simple method does not invalidate or bias 
the subsequent calculations in any way. The E magni- 
tudes were converted to unitary structure factors, 
I Uhl °bs. 

(iv) For each set of phases, the data were split into 
two: a set {H}, the basis set, of phased reflections 
from S A Y T A N  which were used as constraints in 
entropy maximization to generate the non-uniform 
prior qME(x) and the remainder {K} which were 
employed in likelihood estimation. The M I C E  pro- 
gram uses a modified method of exponential 
modelling (Collins & Mahar, 1983; Bricogne, 1984). 
In order to overcome the inherent instability of the 
naive algorithm, it is modified to include two search 
directions, the second of which serves to temper the 
build up of contrast in qME(x) (Bricogne & Gilmore, 
1990). Some of the steps of this method are most 
efficiently carried out in real space, and thus each 
cycle of entropy maximization necessitates the com- 
putation of up to 14 Fourier transforms. To reduce 
aliasing e;rrors, these maps must be oversampled and 
a grid size of less than 0.2 A is necessary when pro- 
cessing data at 0-98 A resolution (which is the resol- 
ution of the APP data set). Although this is possible, 
it has the consequence of being very slow to compute. 
Thus, to save time, only those phased reflections 
having a resolution of 2.0 A or less were incorporated 
into the basis set. There were 117 of these. 

(v) The 117 basis-set reflections (he H) were used 
as constraints in the generation of a maximum- 
entropy prior qME(x). The latter reproduces the 
known phases and amplitudes for reflections h e H, 
but remains maximally non-committal with respect 
to the unknown structure factors he  K. Thus the 
construction of qME(x) gives rise to phase extrapola- 
tion, i.e. its Fourier transform can generate [ u~EI and 
~0~ E for both h~ H and h~ K. 

Likelihood measures the fit between I uhl °~S and 
I u~EI for h ~ K taking into account the probability 
distribution of Ch. It was monitored from cycle to 
cycle for each phase set. The diagonal approximation 
[Bricogne (1984); Bricogne & Gilmore (1990), § 2.4] 
was used throughout. A null hypothesis, ~o, is first 
defined by substituting [u~E[ = 0 into the log-likeli- 
hood expressions and summing over all extrapolates, 
with separate terms for centric and acentric reflec- 
tions. This gives a log-likelihood L~o. The extrapo- 
lated U magnitudes, I u~EI, are now substituted to 
define the hypothesis ~,  giving a log-likelihood value 
L~. The difference L ~ - L ~ o  is the log-likelihood 
gain and acts as a figure of merit, although its 
maximization can also be used for phase refinement 
[Bricogne & Gilmore (1990) § 2.5]. 
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Table 1. A comparison of  maximum log-likelihood gain 
and traditional figures of  merit ( gto, R,~ and A B S F O M )  

for ten SA YTAN-derived phase sets 

All  p h a s e  e r r o r s  a r e  in d e g r e e s ;  X 2 is t h e  X 2 s t a t i s t i c  at  t h e  l i k e l i h o o d  
m a x i m u m .  ( F o r  c o r r e c t  p h a s e  se t s  ~ o  s h o u l d  be  c lo se  to  u n i t y ,  R,, a m i n i m u m  

a n d  A B S F O M  in t h e  r a n g e  1 . 0 - 1 . 2 . )  

A b s o l u t e  M a x i m u m  

Set  no .  p h a s e  e r r o r  L ~ - L ~  o X2 g'o R,~ A B S F O M  

I 79.7 -0.01 2.47 0-87 26.95 0-66 
2 39.1 11.26 1.81 2.73 29.24 1.70 
3 84.5 0.19 1.58 0.77 27.21 0.67 
4 82.9 0.07 2.25 0-84 26.33 0-69 
5 84-8 -0 .02  3.44 0.90 27.53 0.70 
6 84.3 0.00 2.52 0.83 26.94 0.67 
7 84.5 0.36 1.40 0.89 26.18 0.72 
8 81 "0 3"47 0-97 0"82 26.04 0"72 
9 83.3 0"01 2'98 0'90 26.15 0.70 

10 84.9 0.09 2.45 0.80 27.24 0.69 

(iv) The fit between ,-,h ~ robs and U~ r for h e H is of 
great importance. As a measure of fit we used the 
reduced-x 2 statistic: 

x2--(2no+nc)-' E S~llU,,l°bs--lU,,IMEI 2 
h e  H 

na and nc are the numbers of unique acentric and 
centric reflections in the basis set respectively. The 
sum 2na + nc is the total number of degrees of free- 
dom. The parameter sh is a measure of variance and 
has four components: 

2 where eh is the standard epsilon factor, or h is the 
estimated variance of ]U hi °°s. ,X is obtained from 
likelihood refinement and is related to the structural 
complexity of the unit cell and the data resolution 
of the basis-set reflection, whilst p is an empirical 
parameter set to unity throughout this work. Two 2~ 
parameters are refined: one based on the acentric 
extrapolates ,Xa and a corresponding centric param- 
eter -~c. The effective number of atoms in the unit 
cell, Ne~, is given as the weighted mean of 1/Zc+ 
2/,X~. A newer likelihood formalism (Bricogne, 1991) 
employs a single ,X parameter and is thus simpler, 
but was not used here because this research was 
carried out before the programming of the new 
method was completed. 

Entropy maximization continued to X "-= 1-0. In 
general, the likelihood passed through a maximum 
before this point, but it was considered important to 
monitor all likelihood variations for each phase set 
and so refinement was not terminated at the point of 
maximum likelihood. 

2. Results and discussion 

Table 1 shows a comparison between maximum log- 
likelihood gain and the traditional figures of merit 
go, R~ and ABSFOM for ten SAYTAN-der ived  
phase sets. The figures of merit were calculated using 
the M I T H R I L  direct-methods program (Gilmore, 

1984; Gilmore & Brown, 1988). Nine of these sets 
have (IA~]) greater than 80 ° and the log-likelihood 
gains vary from -0.02 to 3.47. The remaining set, no. 
2, has an error of only 39.1 ° with a corresponding 
log-likelihood gain of 11.26; it is thus clearly indi- 
cated. As previously reported by Woolfson & Yao, 
none of the other figures of merit give any useful 
indication; indeed, the best set has by far the worst 
gto value, i.e. the highest; the R~ indicator exhibits a 
variation of less than 12%, and it too has a maximum 
value (i.e. the worst) for the correct set. The ABSFOM 
value of 1.70 is much too large and such a solution 
would be rejected on the grounds of overconsistency 
of contributing invariants. The negative quartet figure 
of merit, NQEST (De Titta, Edmonds, Langs & 
Hauptman, 1975) was not used since the negative 
quartets were deemed too few and too unreliable by 
the M I T H R I L  program. 

The behaviour of likelihood as a function of g 2 in 
these calculations is atypical. In previous calculations 
we have found a regular increase in likelihood gain 
from its starting value as entropy maximization pro- 
ceeds. Some sets, e.g. no. 8, do show this, but in 
general the behaviour is different and most sets have 
likelihood maxima in the range 1.5 < X 2 < 3.5. Correct 
sets tend to have maxima at X 2-~ 1.7. This behaviour 
is most probably a consequence of the Zn atoms 
which form a pseudocentrosymmetric array in the 
cell and dominate the X-ray scattering. Indeed, all 
the centroid maps at 2.0 ,~ derived from these SA Y- 
T A N  phase sets display only the Zn atoms, leaving 
a problem of enantiomorph definition and 
pseudosymmetry when completing the structure with 
standard crystallographic methods. It is significant 
that the existence of residual ambiguities in the SA Y- 
T A N  phase sets was indicated, perhaps somewhat 
cryptically, by an unusual behaviour of the likelihood 
criterion. We would expect that in the tree-directed 
multisolution strategy described elsewhere, this per- 
sistent enantiomorph ambiguity would have been 
detected at an early stage and would have given rise 
to the growth of two parallel branches (one for each 
of the possible enantiomorph choices) until enough 
phase information has accrued for likelihood to dis- 
criminate between them. Along each of these 
branches, likelihood would increase monotonically 
for the best node as X 2 decreased to 1.0. These predic- 
tions will be tested when we attempt the ab initio 
phasing of APP with MICE. 

Because different sets have different g 2 values, it 
is not worthwhile to tabulate entropies, since the latter 
is a function of the X 2 statistic and becomes increas- 
ingly negative as X: decreases. 

Table 2 summarizes a similar calculation for a 
collection of 50 phase sets produced by S A Y T A N .  
There are six sets present with (]A~o[) less than 50 ° 
and they are all readily identified by the likelihood 
criterion. This is a remarkable result; only the 117 
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Table 2. Log-likelihood gain as a figure of merit for 
50 phase sets produced by SA YTAN 

All phase errors are in degrees. L~g-L~o is the m a x i m u m  log- l ikel ihood 
gain; the corresponding X 2 is tabulated in co lumn 5; - ,v a n d  E ,  are discussed 
in the text. 

Mean 
R . m . s .  absolute 

Set Phase phase 
no. error error L ~ , ~ - L ~ (  o X 2 E ,  X 103 ~ c  X 103 

1 100"6 85"4 3"59 0"98 0"66 0"96 
2 100"4 84.4 1 '36 I "22 0.67 0"96 
3 100"3 84.7 0-07 2"41 0"68 0'95 
4 99"0 82"5 1 "92 0.98 0"66 0"95 
5 99"2 83.7 0'33 1 "49 0.67 0'97 
6 99"4 83"3 2"61 1"25 0"67 0"95 
7 59"7 42"7 10"52 1"93 0"62 0 '89 
8 99"9 84"3 -0"01 3"07 0"69 1 "06 
9 100"9 85"6 0' 14 1.77 0"68 0 '99 

10 100"5 85"0 0"22 1'51 0.67 0"96 
I I 63"3 47.1 11' 10 1"93 0"62 0 '89 
12 100"4 85"0 0" 18 2'05 0"68 0.99 
13 99"7 83'5 0.45 1"53 0.67 0"97 
14 96"8 80-2 3"60 0'97 0"65 0"92 
15 64'6 48"6 8"47 2"03 0'63 0"91 
16 100"0 85"0 1"28 1"58 0"66 0'95 
17 100"0 84" 1 0"05 3"05 0"69 1"03 
18 64"9 48. I 10"49 1 "95 0.62 0"88 
19 101"3 85"6 0-00 3'15 (I-69 (I-98 
20 97"8 82.0 1"90 1"52 0 '66 0 '95 
21 101" 1 85.7 1 "80 0"99 0"66 0"94 
22 65"8 49.2 4"58 2"35 0.66 0"95 
23 99"3 84.(I 0-17 2'04 0.68 (I.98 
24 I01 "5 85.9 1"85 1"30 0.66 0.95 
25 99.4 83"3 1.09 (I-98 0"66 0.94 
26 I01" 1 85.4 2.09 1"30 0'66 0.94 
27 97.8 82-2 (}.09 2.81 0"68 1.02 
28 98.7 83-0 -56 .68  1-80 0'68 0.97 
29 I01 "8 85-8 0.48 1.99 0-67 0"96 
30 100-5 84.8 0"08 2-62 0.68 1.01 
31 96-8 80.6 - 0 . 0 2  3 "30 0.70 1" 12 
32 58"6 43.2 10"56 1"94 0-63 0.89 
33 I(X).4 85. I 0-I I 1.49 0-67 0.99 
34 100'2 84.5 0"08 1.76 0'68 0.97 
35 99"0 83.3 - 0 . 0 2  3"20 0"69 1.06 
36 100.8 85"5 0.07 1"78 0'68 0.99 
37 101.0 85-2 0-28 I "54 0.67 (}.98 
38 98 '6 82 "4 3.42 0.98 0"66 0.93 
39 100.4 84-7 0.02 2"61 0.68 0.98 
40 100.9 85.4 0.01 1.74 0"68 0.99 
41 100.5 85.4 - 4 . 7 9  3"43 0.70 I" 14 
42 98"6 83.2 -15 .92  2.83 0-69 1-04 
43 98"1 82-1 -41"97 3-28 0"68 1.00 
44 96'8 81"1 -18"55 3"48 0"69 1"12 
45 100"4 83"9 -31 ' 61  3-35 0'7(I 1"12 
46 99"7 84" 1 - 0 . 0 4  3" 10 0-69 1"07 
47 100"6 85"4 0 '12 1-82 0'68 0"97 
48 100"0 84-6 2.97 0"97 (1"66 0.95 
49 101 "7 86' I 0"68 1"55 0"67 0'98 
50 98-2 81 "9 0"01 3"37 0.71 1-08 

Table 3. Log-likelihood gain for ten phase sets from 
SA YTA N 

In this case, SA YTAN produced 1000 sets and these were first filtered by 
the TFOM figure o f  merit before being passed to the MICE program. The 
co lumn headings are as for Table 2. 

Mean 
R . m . s .  absolute 

Set phase phase 
no. error error L~--L~o X 2 '~a X 103 '~a X 103 

1 97.76 8(1"29 0" I 1 3"40 0"68 I "01 
2 97.62 80'55 0-45 1"39 0"67 1.04 
3 94 '56 76"83 0 '06 " 2"87 0"68 1"05 
4 93"90 76"55 0"08 3"41 0"68 I '01 
5 94'33 76"56 1"31 2"46 0"67 I '00  
6 90.78 71.77 0"03 3"22 0 '69 1"14 
7 67"48 49"46 10'01 2"00 (I-63 0.92 
8 64 '69 46"11 10"01 1"73 0'58 0"85 
9 96"21 79"06 0"07 3"57 (I-68 1"01 

10 56"17 40'59 10"56 1.79 0"60 0"88 
11 95.09 76-5(I 0"05 3'57 0-68 1"01 
12 56"78 41"1(I 11-89 1"83 0"61 0"89 
13 92"96 74"23 - 0 . 0 0  3"32 0"70 1"22 
14 98"13 80"61 0"07 3'42 0 '68 I '01 
15 98"12 80'16 10"22 2"01 0-63 0"92 
16 92 '90 74"37 0 '09 2'68 0 '68 I '06 
17 99.70 82"27 0.06 3"58 0"68 1-01 
18 88"83 70-15 1"08 1'41 (1"66 0'97 
19 92-61 75"52 0"56 1"31 0-66 0"99 
20 94" 57 76-98 0" 53 I " 61 0,67 0.99 

would, however, be unwise to use a minimum E 
criterion as a figure of merit. 

Table 3 summarizes the results pertaining to a 
collection of  20 phase sets selected by the TFOM 
figure of merit out of 1000 trial phase sets produced 
by SAYTAN. Again, the correct sets are indicated, 
but with one anomaly - set 15, which is probably the 
result of  a local entropy maximum. The correspond- 
ing map is uninterpretable: even the Zn atoms cannot 
be located and so this solution would probably be 
rejected at higher resolution. 

Finally, it is worth recording that APP has been 
solved ab initio by G. Sheldrick (private communica- 
tion). As in this work, the Zn atoms were readily 
located and the structure was completed using the 
sophisticated fragment recycling procedures of 
SHELXS (Sheldrick, 1990). 

largest U magnitudes at 2.0 A resolution have been 
input into the basis set, and yet the power of discrimi- 
nation is excellent. Set 22 is rather more weakly 
indicated than the others, but it was stopped at a X 2 
of 2.35, and thus is considerably underfitted with 
correspondingly weak extrapolation. 

The stability of entropy maximization at this resol- 
ution is also clearly demonstrated. The refined E,~ and 
E,. values are ca 6-6 x 10 -4 and 0.96 x 10- 4 except for 
the best phase sets which have lower values of about 
6 .2x  10 -4 and 0 .90x  10 -4 . The weighted mean of 
these latter values gives an Nerr value of  2620. The 
true N is ca 1600; this larger value of Neff reflects 
the accumulation of a good deal of  correct phase 
information with correspondingly exact phase 
extrapolation [Bricogne & Gilmore (1990), § 3.3]. It 

3. Concluding remarks 

We have shown once again that likelihood, coupled 
with entropy maximization, is a uniquely powerful 
discriminator of correct phase sets. In this case it was 
able to distinguish correctly those solutions with a 
mean absolute phase error of less than 50 ° even when 
employing only 117 reflections to a resolution of 2 
in the basis set. 

In this work, we have not attempted to phase APP 
ab initio, but we have instead used phase sets gener- 
ated by the SA YTAN procedure. Clearly, SA YTAN 
is much more efficient at generating large trial phase 
sets than our present version of MICE but much 
poorer at recognizing the best of  them. We are cur- 
rently reprogramming the calculation and handling 
of maps in MICE to eliminate all disk transfers, 
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which should lead to a speed up by a factor of five. 
We expect this will bring the phase-extension 
capabilities of M I C E  up to those of S A Y T A N ;  the 
superiority of likelihood over other figures of merit 
should then confer a definite advantage to the 
maximum-entropy approach over other direct 
methods. We will put these expectations to the test 
by attempting the direct structure determination of 
APP as soon as possible. 

We are grateful to Professor Michael Woolfson and 
Dr Yao for providing the S A Y T A N  phase sets and 
much useful discussion. This research was supported 
by an SERC grant. GB acknowledges the unstinting 
support of Trinity College, Cambridge. 
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Abstract 

The numerical method for calculating the elastic con- 
stants of molecular crystals, using the crystal packing 
program PCK 83, developed and applied to the model 
case of CO2 in previous work is here extended to 
benzene (C6H6) and urea [(NH2)2CO] crystals. Inter- 
atomic potential-energy functions coupled with rigid- 
molecule constraints are used, taking the entire 
angular dependence into account. Correlation with 
other calculations and experimental data is good. 

Introduction 

Various methodologies for modelling intermolecular 
and interatomic forces in crystals have been 
developed over the years, in crystal packing programs 
such as PCK83 (Williams, 1983) and W M I N  
(Busing, 1981), with a view to predicting their phy- 
sicochemical properties (Catlow, Cox, Jackson, 
Parker, Price, Tomlinson & Vetrivet, 1989; 
Kitaigorodsky, 1973, 1978). Of particular interest, and 

* Also at SERC Daresbury Laboratory, Warrington WA4 4AD, 
England. 

the subject of this paper, are the elastic constants of 
crystals, which are related to the second derivatives 
of the energy hypersurface at the minimum. Knowl- 
edge of the elastic behaviour of solids is of importance 
in, for example, investigating the effects of strain on 
crystal growth. 

The general theory of modelling the elastic proper- 
ties of solids developed by Born & Huang (1968) has 
been applied to ionic systems by Catlow & Norgett 
(1976) and Catlow & Mackrodt (1982) and extended 
to the study of molecular crystals by Walmsley (1968 a, 
b, 1987). An alternative approach is the numerical 
method developed by Busing & Matsui (1984), using 
WMIN,  to simulate the application of external forces. 

In the present paper, the numerical method of 
calculating the elastic constants of molecular crystals 
using the packing analysis program PCK83 
(Williams, 1983), developed and applied to the model 
case of CO2 in previous work (Pavlides, Pugh & 
Roberts 1991a), is extended to benzene and urea 
crystals. The elastic constants of CO2 are also recalcu- 
lated in an attempt to address the problem of sym- 
metry relaxation, occurring upon distorting the lat- 
tice, in more detail. Within the numerical limitations 
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